

HFC Network Monitoring System

www.hfcmonitoring.com

tomasz.ostaszewski@hfcmonitoring.com

System description

Analytical monitoring system for HFC network elements :

- CMTS concentrators
- MAC domains, Cable Downstream and Upstream Interfaces
- cable modems
- Real-time alerting
- Real-time CPE monitoring and troubleshooting
- The system collects and shows historical data on monitored elements from HFC plant
- Allows operators to proactively detect service impairments and trends

Business value

- <u>Improve Customer Experience</u> by refining network quality
- <u>Reduce MTTR</u> through reduction of time spent searching of network issues
- <u>Reduce trouble calls and increase subscriber Quality of</u>
 <u>Experience</u> by finding and resolving plant problems before service is affected

System Genesis

- Long-term experience in HFC Infrastructure management and monitoring
- Meet the market demands
 - Complexity
 - High performance
 - Multiplatform (support for all HFC vendors)
 - Author's algorithms for processing collected data
 - Monitoring and managing through own independent system
 - Unique functionalities
 - Intuitive data presentation

System features

- High performance and scalability: The system is tested on the infrastructure, which contains about **1 000 000** cable modems
- High system stability and availability
- System ergonomics is created based on long-term experience with major cable operators
- Can be used for bandwidth planning and overbooking
- The system is tested with CMTS controllers manufactured by: Cisco, Arris, CASA
- The system can be integrated with external CRM

System architecture

The system has modular architecture and it's highly efficient. The system consists of the following components:

- Application
- Data collectors
- Primary database
- Historical data database

Implementation models

We perform 2 implementation models:

- CLOUD-BASED model
 - Proposed mainly for small and medium-sized cable operators
 - VPN direct channel is set between our Cloud and customer management network

ON-PREMISE model

- Proposed mainly for medium and large cable operators
- on-site Data Center

Application areas

The system in a typical environment is implemented for the following groups of users:

- Help Desk / Call Center
- Provider's technical service, technical team in the field
- NOC (Network Operation Center)
- Infrastructure and HFC facility administrators
- Marketing and Planning

Application areas Help Desk

HelpDesk staff can use features that allow them to check the operating parameters of the customer's cable modem:

- Downstream Power, Downstream SNR
- Upstream Power, Upstream SNR
- Error correction on the modem (SigCorr, SigUncorr)
- Uploaded and downloaded data volume
- Hosts (CPEs)
- Other functions dependent on operator requirements

Application areas Help Desk

HelpDesk staff can use features that allow them to:

- Perform basic operations on the modem, such as:
 - modem restart
 - ping
 - flow verification
 - error removal
- Perform expanded operations on the modem
 - Wi-Fi management
 - Providing MTA information
- Connection to CRM gives possibility to combine customer data with particular cable modem. The system can find the modem by customer's data e.g. contract number

Application areas

The System allows users to check cable network performance and modems parameters. Also it was designed to work on mobile devices to help technicians in the field.

For technical team in the field the following information are provided:

- Upstream SNR (also online readings), Downstream SNR, Upstream Power, Downstream Power
- Error correction on the cable interfaces
- Registered modems number per interface and per CMTS

Application areas NOC – Network Operation Center

NOC module provides all statistic data. The most important are:

- Providing alarms after exceeding values beyond the established thresholds. Thresholds were established based on DoCSiS/HFC network operation standards
- Upstream and Downstream statistics/parameters
- MAC-Domain movement and saturation , Downstream and Upstream
- For MAC-Domain also an average rate per physical interface is calculated
- Number of registered modems
- Errors correction on the Upstream interfaces
- Interfaces where number of CMs with errors exceeds 20%

Application areas

Marketing and Planning

The system presents data that can be also used for investment planning. Particularly, the system:

- Shows internet plans for all customers also divided into CMTS devices
- Calculates the average flow rate for each plan divided into the CMTS or globally across an operator's network
- Shows Number of downloaded/uploaded data per user/cable interface
- It is an ideal tool for forecasting bandwidth (overbooking)
- Heavy Users show customers who generates most bandwidth usage relative to whole traffic
- Traffic statistics shows customers exeeding 80% of bandwitdh

System is built of 6 main modules:

- Dashboard Module
- CMTS Module
- HFC Modem Module
- Statistics Module
- Alert Module
- Search Module

Dashboard Module

This module shows basic information about individual CMTS or the entire HFC network in graphical forms:

- SNR Statistics for CMTS interfaces and modems
- Number of CMs with incorrect parameters
- Number of CMs DoCSiS 2.0 vs 3.0(3.1)
- Upstream, downstream and MAC domain saturation
- Number of CMs logged on each CMTS/interface
- Cable interfaces with the largest error correction
- Active CMTSes
- Top 10 Internet packages, which generate the largest traffic

Dashboard Module

CMTS Module presents information about the device:

- CMTS software version, uptime
- List of cable interfaces and MAC-Domains with dependencies
- Parameters of all cable interface
- A list of cable modems with information about the current firmware and cable interfaces, on which modems are logged
- List of CMs with incorrect parameters

	CM	TS		Cable mode	ms o	Upstre	eam SNR Stati	stics O	Parameters Statistics O			
CMTS	Firmware	Uptime	Model			_		_		_		
Gliwice	08.02.00.97	32 dni	ARRIS C4	other	558	<25	<28	>28	Warning	Error		
Downstream	98 / 98 Unstream	me: 118 / 120	MAC-Domains:	online	3356	4	14	3347	367	68		
Combream	11		mao-pomains.	All modems	3912	0.12%	0.42%	99.47%	1196	2%		

MAC-Domains list

MAC-Domain	Interface name	ID	Frequency	Channel width	DoC Sis	Downstream Power	Modulation	Modems Online	Interface description
cable-mac 1	cable-downstream 14/0	1	385 MHz	6 MHz	DoCSiS	49	4	33	±
cable-mac 1	cable-downstream 14/6	7	421 MHz	6 MHz	DoCSiS	49	4	21	±
cable-mac 1	cable-downstream 14/1	2	391 MHz	6 MHz	DoCSiS	49	4	69	+
cable-mac 1	cable-downstream 14/7	8	427 MHz	6 MHz	DoCSiS	49	4	81	+
cable-mac 1	cable-downstream 14/2	3	397 MHz	6 MHz	DoCSiS	49	4	23	+
cable-mac 1	cable-downstream 14/3	4	403 MHz	6 MHz	DoCSiS	49	4	25	±
cable-mac 1	cable-downstream 14/4	5	409 MHz	6 MHz	DoCSiS	49	4	18	+
cable-mac 1	cable-downstream 14/5	6	415 MHz	6 MHz	DoCSiS	49	4	42	±

	Interface	ID	Frequency	Channel width	Modulation	Signal Unerrored	Signal Corrected	Signal Uncorrected	SNR	Micro Reflections	Online Modems	Description	
-1212	cable-upstream 10/0.0 (QAM: 1)	1	30 MHz	3.2 MHz	20	100%	0%	0%	36.5	0	90	Perkoza 2-12, Czajki 7, 11-	÷

CM list from specific interface

	1			Interfac	e: Modul	ar-Ca	ble1/	1/0-downs	tream6		
	HFC	IP	Status	Firmware	Model	RX Power	Timing Offset	Upstream SNR	Upstream Interface	Address/Customer Number	Update
1	e448c75b2114	10.153.0.182	other	epc2425-E10-5-v202r12812-130715cs-TYA	EPC2425	0.5	6370	34.7	Cable5/0/0-upstream5 Ca5/0/0-upstream5	ul. Magazynowa 3/4 Efk 4571910	2017-05-05 20:03:24
2	e448c75ae94c	10.153.16.202	online	epc2425-E10-5-v202r12812-130715cs-TYA	EPC2425	0.5	6888	33	Cable5/0/0-upstream1 Ca5/0/0-upstream1		2017-05-05 19:58:01
3	d)c522f1d02a	10.153.54.251	online	9.1.103V.EURO	TG2492S-85	-0.5		34.7 34.7	Cable5/0/0-upstream4 Ca5/0/0-upstreamB	ul. Magazynowa 3/12 Ełk 212893	2017-05-05 20:37:09
4	c0c5225086ba	10.153.58.71	online	9.1.103V.EURO	TG2492S-85	-0.5		35.1 33.6	Cable5/0/0-upstream5 Ca5/0/0-upstreamB	Ełk-ul. Jarosława Dąbrowskiego 16A/26 6639694	2017-05-05 20:37:14
5	bccab5ff02f5	10.153.24.25	online	9.1.1035	CM820S	0		31.7 31.4 29.1	Cable5/0/0-upstream0 Ca5/0/0-upstreamB	ul.Jana Pawła II 1A /5 Ełk 26594	2017-05-05 20:37:14
6	bccab5fe8c47	10.153.13.213	online	9.1.103S	CM820S	-0.5		33.6 33	Cable5/0/0-upstream4 Ca5/0/0-upstreamB	Ełk-ul. Armii Krajowej 47/18 3015099	2017-05-05 20:37:19
7	9c3426511d2a	10.153.39.201	online	9.1.103V.EURO	TG2492S-85	0		33.2 32.3 30	Cable5/0/0-upstream0 Ca5/0/0-upstreamB	ul. kard. Stefana Wyszyńskiego 27/15 Etk 7877688	2017-05-05 20:37:13
8	80c6aba777b0	10.153.45.59	other	ST52.05.73	TCM420	0	6403	33.9	Cable5/0/0-upstream4 Ca5/0/0-upstream4	ul. Jarosława Dąbrowskiego 10/14 Ełk 3858408	2017-05-05 20:17:30

Timing Offset Upstream Interface RX Lp. HFC IP Status Firmware Model Upstream SNR Update Power 36.1 37.4 fc94e376f4b2 10.150.243.132 online STB2.01.72 TWG870 0.5 1879 Logical Upstream Channel 13/1.2/0 2017-01-18 15:27:47 1 33.4 39.1 34.4 34.4 2 f44b2abaeea6 10.150.209.222 online e3928-E15-5-E11F-c5200r55113-160720c EPC3928 0.7 1951 Logical Upstream Channel 13/1.1/0 2017-01-18 15:27:48 35.1 35.6 36.7 online EPC3928 1915 36.7 f44b2aba8e28 10.150.224.250 e3928-E15-5-E11F-c5200r55113-160720c 0.2 Logical Upstream Channel 13/1.1/0 2017-01-18 15:27:47 3 38.2 34.4 34.4 39.1 f44b2aba72f8 10.150.223.203 online EPC3928 1927 4 e3928-E15-5-E11F-c5200r55113-160720c 0 Logical Upstream Channel 13/1.2/0 2017-01-18 15:27:50 35.6 37.4 5 e448c7b68a1e 10.150.212.231 online epc3010-v302r12901-100511c EPC3010 0 1876 39.1 Logical Upstream Channel 13/1.1/0 2017-01-18 15:27:48 35.6 34.4 e448c7b566a2 10.150.200.232 online epc3010-v302r12901-100511c EPC3010 0.5 1902 35.1 2017-01-18 15:27:47 6 Logical Upstream Channel 13/1.0/0 35.6 36.7 7 e448c76dbc54 other e3925-E10-5-c1100r5593-160720c EPC3925 0 0 Logical Upstream Channel 13/1.3/0 2017-01-18 00:53:57 37.4 33.7 e448c76c4ef6 10.150.226.229 online e3925-E10-5-c1100r5593-160720c EPC3925 -0.2 1890 37.4 Logical Upstream Channel 13/1.0/0 2017-01-18 15:27:46 8 36.7 35.6

CMs with incorrect parameters

online CM check module

HFC	Model	Upstrem Power	Upstream SNR	Downstream Power	Downstream SNR
bccab5fe59d5	CM8205	42.8	36.12	-7.2	37
7cb21bc0864c	EPC3008	43, 43	36.12, 36.12	-6.7, -6.7, -6.9, -7, -7.5, -6.9, -6.5, -6.7	39.8 , 39.9 , 39.9 , 39.5 , 40.3 , 40.3 , 40.5 , 40.8
7cb21bbfe38c	EPC3008	46.5, 46.5	36.12, 36.12	-1.2, -1.1, -0.8, -1, -2.3, -2.1, -1.7, -1.2	40.4 , 40.8 , 41 , 40.8 , 40.5 , 41 , 41.2 , 41.9
7cb21bbf9a26	EPC3008	49.5, 49.5	36.12, 36.12	-3.8, -4.8, -4.3, -3.8, -5.6, -5, -4.8, -4.5	40.8 , 40.3 , 40.5 , 40.8 , 40.4 , 40.9 , 40.8 , 41.4
7cb21bbf9754	EPC3008	38, 38	36.12, 36.12	-0.6, -0.9, -0.4, -1, -1.4, -1.2, -1.3, -0.9	40.3 , 40.3 , 40.3 , 40.1 , 40.8 , 40.8 , 40.7 , 41.4
7cb21bbf7e38					
7cb21bbac528					
6863592aedcb	STMicroelectronics CM	40.7	36.12	-5.5	34.8
686359254eae	STMicroelectronics CM	38.7	36.12	-2.2	37
68635921c2fd	STMicroelectronics CM	42.2	36.12	0	36.9
68635921c2b9	STMicroelectronics CM	42.7	36.12	-2.3	36.5
68635921be12	STMicroelectronics CM	47.2	36.12	0.4	37.1
68635921b8fe	STMicroelectronics CM	45.7	36.12	-4.7	36.5
68635921b8a1	STMicroelectronics CM	42.7	36.12	-6.5	36.4
68635921b817	STMicroelectronics CM	45.7	36.12	-5	31.1
68635921b78e	STMicroelectronics CM	43.7	36.12	-5.3	37
6863591c473d	STMicroelectronics CM	41.7	36.12	-6.7	36
54d46f13b162		47.7	36.12	4.3	39.4

allows to query on demand all CM on specific cable interface

Google Maps CM identification.

Upstream throughput, SNR, upstream use, number of modems

Cable modem module

- Online Reading Module presents the current status of cable modem
- Each cable modem is under monitoring for main operating parameters. Data collection frequency is matched to customer requirements.
- Each cable modem can be added by the operator for individual monitoring. Each operator has its own modems list which are currently monitored.

System Design Cable modem module

Cable Modem Online Informations Cable modem informations **Cable Modem IP Address** HFC MAC Serial number **Current Time/Date Current Status** Cisco EPC3008 EuroDocsis 3.0 Data Modem HW_REV: 1.0 VENDOR: Cisco BOOTR: 2.3, 1, R3 SW_REV: e3000-c100075593.151110c MODEL: EPC3008 **Firmware Version** 10.157.8.112 c8fb263ce7a0 265523839 e3000-c1000r5593-151110c 2016/09/14 19:38:11 Active Current informations CPE MAC 00095bedda02 Netgear, Inc. USB Ethernet Configuration file ^1/4E0BB4C9/ a42bb0d39f63 0bit/sek 95.37 Mbit/sek c8fb263ce7a0 Cisco SPVTG

Parameters (from CM)											
		UP	STREAM								
Upstream Power	Resety Upstream	Sync Loss	Upstream ID	Frequency	Channel Width	Upstream SNR	Interface				
51.5	0	0	2	54	6.4	31.76	Cable8/0/1-upstream1				

DOWNSTREAM Downstream Power Downstream SNR Frames Correcter Frames Uncorrected Channel Width Frequency (MHz) Modulation Interleave Interface -2.7dBmV 41.8 842 qam256 taps12Inc17 0.000% 0.000% Modular-Cable8/0/0-downstream15 8 -2.4dBmV 42.1 786 8 qam256 taps12Inc17 0.000% 0.000% Modular-Cable8/0/0-downstream8 -2dBmV 42.5 794 gam256 taps12Inc17 0.000% 0.000% Modular-Cable8/0/0-downstream9 8 -2.3dBmV 41.9 802 Modular-Cable8/0/0-downstream10 8 qam256 taps12Inc17 0.000% 0.000% -2dBmV 42.1 810 qam256 taps12Inc17 0.000% 0.000% Modular-Cable8/0/0-downstream11 -2.2dBmV 31 818 8 gam256 taps12Inc17 8.534% 1.358% Modular-Cable8/0/0-downstream12 -2.8dBmV 41.4 826 qam256 taps12Inc17 0.000% 0.000% Modular-Cable8/0/0-downstream13 -2.8dBmV 41.4 834 8 gam256 taps12Inc17 0.000% 0.000% Modular-Cable8/0/0-downstream14

System Design Cable modem module

Cable modem parameters diagrams

Statistic Module

Statistics Module contains information about:

- Downloaded/Uploaded data by each cable modem, divided into CMTS and MAC-Domains
- Average flow rate for individual internet plans, CMs
- Firmware versions (with modems reset function)
- Number of logged CMs
- CMs' models
- Overbooking for each internet plan / total traffic per plan / CMTS
- CMs Gauss parameters distribution
- Heave Users
- Hourly user traffic statistics
- DoCSiS 3.0 CMs working in D2.0 mode
- Cable modem parameters statistics gather every day
- MAC-Domain interfaces bandwidth overbooking

System Design Statistic Module

Monitoring HFC v1.46 40 GB 35 GB 30 GB 25 GB 20 GB 15 GB 10 GB 5 GB 0 GB 2017-03-25 2017-04-10 2017-04-14 2017-04-30 2017-03-30 2017-03-26 2017-04-04 2017-04-08 2017.04.09 2017-04-11 2017.04.12 2017-04-13 ^{2017.04.15} ^{2017,04,16} 2017-04-19 2017.04.24 2017-04-29 2017-05-02 2017-05-03 2017-03-27 2017.03.28 2017-03-29 2017-03-31 2017-04-01 2017-04-02 2017-04-03 2017-04-05 2017-04-06 2017-04-07 2017.04.17 2017-04-18 2017.04.20 2017.04.21 2017-04-22 2017.04.23 2017.04.26 2017-04-27 2017-04-28 2017-05-01 2017-05-04 Downstream (GB) Upstream (GB) e448c7bfc832

Cable modem traffic history

System Design Statistic Module

Traffic schedule for respective internet plan

				l	Rozkład	d pakietó	w						Wybierz	Wybierz urządzenie		
Nazwa pakietu	llość pakietów	Downstream TB (dzisiaj)	Upstream TB (dzisiaj)	Downstream Gb/sek (dzisiaj)	Upstream Gb/sek (dzisiaj)	Downstream TB (obecny miesiąc)	Upstream TB (obecny miesiąc)	Downstream Gb/sek (obecny miesiąc)	Upstream Gb/sek (obecny miesiąc)	Downstream TB (poprzedni miesiąc)	Upstream TB (poprzedni miesiąc)	Downstream Gb/sek (poprzedni miesiąc)	Upstream Gb/sek (poprzedni miesiąc)	Downstream Šrednia pakiet (Mbit/sek)	Upstream Šrednia pakiet (Mbit/sek)	
36m	115508	47.7268	5.9108	6.5	0.8	4481.4135	497.4021	15.2	1.7	4540.3508	512.0442	13.9	1.6	0.123	0.014	
12m	141887	41.53	3.0955	5.7	0.4	3779.412	265.9877	12.8	0.9	4009.1934	280.8483	12.3	0.9	0.088	0.008	
80m	43720	28.5029	4.8256	3.9	0.7	2597.8654	358.9326	8.8	1.2	2593.5238	363.7542	7.9	1.1	0.186	0.026	
20m	44041	15.6287	1.3529	2.1	0.2	1486.4879	118.2562	5	0.4	1558.1474	122.8961	4.8	0.4	0.111	0.009	
,fen	35990	8.6786	0.5505	1.2	0.1	753.1088	49.126	2.6	0.2	828.084	53.1042	2.5	0.2	0.072	0.005	
Nischany	0	2.3141	0.3395	0.3	0	214.4544	28.8289	0.7	0.1	77.5089	12.88	0.2	0	0	0	
2m	10612	1.6171	0.0905	0.2	0	127.4083	8.123	0.4	0	142.9611	8.7882	0.4	0	0.042	0.003	
528m	1432	1.135	0.3745	0.2	0.1	100.1624	25.1373	0.3	0.1	93.8414	25.2388	0.3	0.1	0.205	0.055	
5m	4721	0.4758	0.0394	0.1	0	37.6356	3.1758	0.1	0	42.2432	3.4648	0.1	0	0.028	0.002	
10m	996	0.3561	0.0254	0	0	32.1067	2.6788	0.1	0	34.4353	2.8809	0.1	0	0.108	0.009	
,ém	1438	0.3158	0.0243	0	0	31.0196	2.3639	0.1	0	35.2538	2.6428	0.1	0	0.077	0.006	
18m	824	0.2481	0.017	0	0	25.4587	1.7182	0.1	0	28.2209	2.092	0.1	0	0.107	0.008	
80m	128	0.4804	0.0614	0.1	0	23.2474	3.2132	0.1	0	25.2298	2.9731	0.1	0	0.617	0.073	
. 60m_2x	57	0.2409	0.1368	0	0	15.2589	4.6075	0.1	0	14.8481	3.0158	0	0	0.816	0.166	
8m	407	0.1267	0.0134	0	0	12.5014	1.2718	0	0	13.6544	1.3199	0	0	0.105	0.01	
28m	125	0.2778	0.0371	0	0	10.3054	1.488	0	0	11.3089	1.6453	0	0	0.283	0.041	

Statistic Module

Overbooking and traffic summary

						Servi	ce Pac	kets							Select dev	ice	
			Tod	lay			Current	month		Previous month							
Service Packet	Quantity	DS TB (today)	US TB (today)	DS Gb/sec (today)	US Gb/sec (today)	DS TB (current month)	US TB (current month)	DS Gbit/sec (current month)	US Gbit/sec (current month)	DS TB (previous month)	US TB (previous month)	DS Gbit/sek (previous month)	US Gbit/sek (previous month)	DS Average packet GB	US Average packet GB	DS Average packet (Mbit/sec)	US Average packet (Mbit/sec)
multinet_38m	136226	166.6391	10.8865	20.7867	1.358	5635.0385	386.1336	29.6825	2.034	100672864.1619	623.9646	307912.2249	1.9084	756749.9075	4.6903	2314.552	0.0143
multinei_80m	82507	135.1073	12.1287	16.8534	1.5129	4888.3969	420.9737	25.7498	2.2175	134226102.4936	675.1963	410538.2275	2.0651	1665889.3058	8.3799	5095.193	0.0256
multinet_10m	100975	73.6718	4.3342	9.1899	0.5407	2563.1322	150.5415	13.5013	0.793	8392957.5468	251.0241	25670.2166	0.7678	85114.0236	2.5457	260.325	0.0078
multinei_30m	47093	42.9746	2.7144	5.3607	0.3386	1556.3738	95.9909	8.1982	0.5056	2595.2428	159.1468	7.9377	0.4868	56.4315	3.4605	0.173	0.0106
multinel_108m	13027	31.1375	4.9754	3.8841	0.6206	1073.3558	165.698	5.6539	0.8728	50333408.5354	245.44	153946.8648	0.7507	3956506.5127	19.293	12101.143	0.059
multinet_Bm	24947	11.9801	0.6559	1.4944	0.0818	402.5059	23.1172	2.1202	0.1218	680.0346	39.0966	2.0799	0.1196	27.9134	1.6048	0.085	0.0049
multinel_3m	5447	1.8076	0.1042	0.2255	0.013	60.5395	3.6769	0.3189	0.0194	101.4191	6.0972	0.3102	0.0186	19.0661	1.1462	0.058	0.0035
Unknown	0	1.0176	0.1737	0.1269	0.0217	33.4111	4.7803	0.176	0.0252	16777421.3917	17.2865	51314.4549	0.0529	0	0	0	0
multinel_10m	873	0.8754	0.0631	0.1092	0.0079	27.9651	1.5179	0.1473	0.008	46.2365	2.5634	0.1414	0.0078	54.2338	3.0068	0.166	0.0092
multinet_\$6m_2x	232	0.8328	0.1933	0.1039	0.0241	25.1501	6.266	0.1325	0.033	46.2351	10.5513	0.1414	0.0323	204.0722	46.5713	0.624	0.1424
dana_im	856	0.5302	0.0371	0.0661	0.0046	17.4729	1.2398	0.092	0.0065	28.6186	1.9446	0.0875	0.0059	34.2353	2.3262	0.105	0.0071
multinal_18m	495	0.5128	0.031	0.064	0.0039	16.8962	0.9178	0.089	0.0048	28.4458	1.6285	0.087	0.005	58.8455	3.3688	0.18	0.0103
multinal_tm	2305	0.5309	0.0402	0.0662	0.005	10.7949	1.3615	0.0885	0.0072	29.066	2.3891	0.0889	0.0073	12.9126	1.0614	0.039	0.0032
multination_90m	128	0.7519	0.1503	0.0938	0.0187	14.9435	2.8654	0.0787	0.0151	24.2615	4.4414	0.0742	0.0136	194.0924	35.5309	0.594	0.1087
multinel_34m	321	0.5081	0.0503	0.0634	0.0063	14.543	1.2063	0.0766	0.0064	25.0519	1.9809	0.0766	0.0061	79.9164	6.3191	0.244	0.0193
multinel_30m_3x	78	0.2656	0.0309	0.0331	0.0039	9.9632	1.3792	0.0525	0.0073	19.72	2.2792	0.0603	0.007	258.8882	29.9223	0.792	0.0915
multinebia_100m	98	0.4256	0.1565	0.0531	0.0195	8.352	2.8314	0.044	0.0149	14.0113	2.2005	0.0429	0.0087	146.4033	22.9926	0.448	0.0703
multinal_dm	261	0.1998	0.0107	0.0249	0.0013	5.9727	0.3286	0.0315	0.0017	9.1906	0.5609	0.0281	0.0017	36.0581	2.2006	0.11	0.0067
dana_8m	208	0.1676	0.0145	0.0209	0.0018	5.4405	0.5571	0.0287	0.0029	9.1395	0.8149	0.028	0.0025	44.9945	4.0117	0.138	0.0123
multinetprofit_fm	3740	0.1231	0.0186	0.0154	0.0023	3.9159	0.6655	0.0208	0.0035	7.1885	1.1273	0.022	0.0034	1.9682	0.3087	0.006	0.0009
diana_2m	228	0.1393	0.0107	0.0174	0.0013	3.8104	0.3182	0.0201	0.0017	6.6299	0.5212	0.0203	0.0016	30.0399	2.3615	0.092	0.0072

Statistic Module

Top 100 statistic, firmware version inventory

			Т	op 100					Quota	Select device	- >>
HFC	Interface	Model	DS Today (GB)	DS Till today (GB)	US Today (GB)	US Till today (GB)	Average bandwidth current month (Mbit/sec)	Delays SLA	DS Previous month (GB)	US Previous month (GB)	Average bandwidth DS previous month (Mbit/sec)
1 24767d4e0e40	Modular-Cable8/0/1-downstream15 Wi8/0/1:10 Stargard	EPC3925	82.189	72215.43	0.038	1.666	228.2	0	157644.215	2.766	498.2
2 3c7a8a82660a	Modular-Cable8/0/0-downstream22 Wi8/0/0:2 Stargard	TG2492S	120.481	70109.405	0.034	3.227	221.6	0	1217.121	2.775	3.8
3 a4a24a3e03b6	Modular-Cable8/0/1-downstream4 Wi8/0/1:0 Stargard	EPC3212	2.422	54264.704	0.105	6.766	171.5	0	91133.552	14.385	288
4 o8fb263f034c	Modular-Cable8/0/0-downstream6 Wi8/0/0:0 Stargard	EPC3008	0.141	49344.624	0.008	1.782	158	0	105315.038	4.854	332.8
5 c8fb265fe7f6	Modular-Cable8/1/2-downstream15 Wi8/1/2:3 Elk	EPC3208	6.256	27210.994	0.113	19.499	86	0	229.934	10.364	0.7
6 c8fb26f5c944	Modular-Cable8/0/0-downstream23 Wi8/0/0:10 Stargard	EPC3925	6.313	26113.984	0.006	3.988	82.5	0	17763.573	6.166	56.1
7 c8fb263cd8a2	Modular-Cable8/0/1-downstream7 Wi8/0/1:12 Stargard	EPC3008	ł		CM5	50B				6.1.127	
8 bccab5fe6f41	Modular-Cable8/0/0-downstream20 Wi8/0/0:2 Staroard	CM820S	_		CM8	20A				9.1.103S	
9 c8fb263dbd38	Modular-Cable8/0/0-downstream11 Wi8/0/0:1	EPC3008			CM8	20B				9.1.103S	
	Stargard	_			CM8	205				9.1.103S	
					CM9	00S			7	.10.71.EURO	
					CSM	571B			CM.0	6.00.0X.04210	7D
		DPM DPM-4.4.9.0_03.11_NA									

Statistic Module

Gauss parameters distribution

Parameters statistics Gaussian Distribution Cable modems Models Firmware Versions Service packets Top 100 HU Bandwidth usage Gaussian Distribution Select Downstream SNR Downstream Power Upstream Power Upstream SNR mostream 1 Power Downstream 3 Power Downstream 4 Power Downstream 5 Power Downstream 6 Power Downstream 7 Power Downstream 1 Power Select S	-
Parameters statistics • Gaussian Distribution • Cable moderns • Models • Firmware Versions • Service packets • Top 100 • HU • Bandwidth usage Gaussian Distribution Select • Downstream SNR • Downstream Power • Upstream Power • Upstream SNR wnstream 1 Power • Downstream 2 Power • Downstream 3 Power • Downstream 4 Power • Downstream 5 Power • Downstream 6 Power • Downstream 7 Power • Do Downstream 1 Power • Downstream 1 Power • Downstream 1 Power • Downstream 2 Power • Downstream 3 Power • Downstream 4 Power • Downstream 1 Power • Downstream 2 Power • Downstream 3 Power • Downstream 1 Power • Downstream 1 Power • Downstream 1 Power • Downstream 1 Power	
Gaussian Distribution • Downstream SNR • Downstream Power • Upstream SNR wnstream 1 Power • Downstream 2 Power • Downstream 3 Power • Downstream 4 Power • Downstream 5 Power • Downstream 6 Power • Downstream 7 Power • Do Downstream 1 Power 4:41730 4:4174	
Caussian Distribution Ownstream SNR • Downstream Power • Upstream SNR wrstream 1 Power • Downstream 2 Power • Downstream 3 Power • Downstream 4 Power • Downstream 5 Power • Downstream 6 Power • Downstream 7 Power • Do Downstream 1 Power	
Gaussian Distribution	
Downstream SNR Downstream Power Upstream Power Downstream 5 Power Downstream 6 Power Downstream 7 Power Downstream 1 Power Downstream	device
wnstream 1 Power • Downstream 2 Power • Downstream 3 Power • Downstream 4 Power • Downstream 5 Power • Downstream 6 Power • Downstream 7 Power • Do Downstream 1 Power 4:41730 4:417	
A: 41730 4: 41730 4: 41730 4: 41700 4: 417000 4: 417000 4: 4170000 4:	ownstream 8 Pov
Lownstream i Power	ownstream or ov
4: 41730	
4: 41730	
•	
· · · · · · · · · · · · · · · · · · ·	
••••••••	

System Design Statistic Module

Cable modem parameters

	Cable modem parar	neters statistics	(generated : 2017-01-1	14 20:00)			
	Overall HFC Network Qual	ity. Warnings: 2	21.03% Eri	rors: 5.17%	, D		
DS Power/US Power All parameters	СМТS	Correct para	ameters	WARNI	NG	ERRO	IR
		Modems	%	Modems	%	Modems	%
1	Lebe CMTS	15	19.23%	24	30.77%	39	50%
2	Czama Woda	6	37.5%	4	25%	6	37.5%
3	Skanzewy	210	38.75%	188	34.69%	144	26.57%
4	Radziorków	46	42.59%	35	32.41%	27	25%
5	Kartuzy	1445	36.08%	1630	40.7%	930	23.22%
6	Dietelo Diata	1206	47.74%	812	32.15%	508	20.11%
7	Kwidzyn	3627	41.14%	3672	41.65%	1518	17.22%
8	Gorzów Wielkopolski CMTS 2	6672	53.57%	3650	29.31%	2133	17.13%

Statistic Module

Cable modem parameters

Alert Module shows real-time information about:

- SNR Upstream interfaces
- traffic volume on MAC-Domains and upstream/downstream interfaces, together with a saturation forecast
- Interfaces on which number of logged CMs is changing abnormally
- Errors correction on upstream interfaces
- Interfaces with large amount of modems with errors

The performance levels have been selected with "Best practice" knowledge.

Downstream interfaces, MAC-Domains load

	Down	stream utilization	All CMTSes		Export				
						>>			
СМТЅ	Interface	Throughput rate MAX Mbit/sek	Throughput rate AVG Mbit/sek	Saturation (days)	Saturation 80% (per/24h)	Saturation 100% (per/24h)			
Ek	Modular-Cable8/0 /0-downstream12	33.96	19.153	211	6	0			
Watszawa	Integrated-Cable8/1 /2-downstream2	44.833			Upstream utilization	All CMTSes	Exp	port	
Olazlyn	Modular-Cable6/1 /1-downstream16	34.187							>>
Ek	Modular-Cable8/0 /0-downstream6	34.303	СМТЅ	Interface	Utilization MAX (%)	Utilization AVG (%)	Saturation (days)	Saturation 80% (per/24h)	Saturation 100% (per/24h)
Ek	Modular-Cable8/0 /0-downstream3	34.169	Czestochowa	Cable8/1 /0-upstream4	76	42	A downward trend	10	0
Ek	Modular-Cable8/0 /0-downstream2	34.982	Ostroda	Cable6/0 /1-upstream0	71	40	538	10	o
Gorzow-2	Modular-Cable5/0 /1-downstream9	44.543	Odansk	cable-upstream 4/11.0	n 73	26	114	8	0
			Olaztyn-2	Cable7/0 /0-upstream0	76	37	64	5	0
			Malbork	cable-upstream 3/10.0	n 72	32	108	5	0
			Olaztyn-2	Cable7/0 /0-upstream1	74	33	73	5	0

System Design Universal Search Module

CM search

Cable modem / Customer Search		
Customer Number / Phone number / Address / STB MAC		
	Any device	0
	HFC	
		0
	Search	

- A single collector is able to query 500 to 1000 modems per second collecting complete set data depending on customers' network
- The system can easily gather, process and store 50 million data records per twenty-four-hour (tested on actual customer)
- The system has very good scalability.

monolit-it.pl

Monolit IT Sp. z o.o. Gdynia 81-341, ul. Warsztatowa 12, tel. +48 58 763 30 00, fax +48 58 763 30 10 Warszawa 01-552, Plac Inwalidów 10 NIP 958-155-93-85